Катушка индуктивности. Описание, характеристики, формула расчета

Накопленная энергия в индуктивности

Как известно магнитное поле обладает энергией. Аналогично тому, как в полностью заряженном конденсаторе существует запас электрической энергии, в индуктивной катушке, по обмотке которой течет ток, тоже существует запас — только уже магнитной энергии.

Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:

где L — индуктивность, I — ток, протек

где L — индуктивность, I — ток, протекающий через катушку индуктивности.

Видео

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов.  Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC — метр мне показывает ноль.

Имеется ферритовый сердечник

Начинаю вводить катушку в сердечник на самый край

LC-метр  показывает 21 микрогенри.

Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине.  Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности  в переменных катушках индуктивности:

где

1 — это каркас катушки

2 — это витки катушки

3 — сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо «виток к витку».

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз.  Вывод: чем меньше количество витков — тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

[quads id=1]

Давайте поэкспериментируем с ферритовым кольцом.

Замеряем индуктивность

15 микрогенри

Отдалим витки катушки друг от друга

Замеряем снова

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка  не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Замеряем

Офигеть! Увеличил количество витков  в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от «витков в квадрате». Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Виды и типы

Различают низкочастотные, высокочастотные модели. В отдельную категорию выделяют винтовые, спиральные катушки. Также существуют модификации, которые используются в радиотехнике. Они подходят для защиты конденсатора либо резонансных контуров.

Устройства в радиотехнике
Устройства в радиотехнике

Для трансформаторов годятся катушки с усилителем каскадом. В последнюю категорию выделены вариометры, основное отличие — высокая частота колебательных контуров. Дроссели могут быть одинарными либо сдвоенными. От этого зависит показатель индуктивности и питания системы.

Низкочастотные

Для включения в электрическую цепь, применяется низкочастотная катушка индуктивности. Она предназначена для подавления переменного тока. В формуле учитывается циклическая частота и показатели индуктивности. За основу в устройствах берётся сердечник, который изготавливается из стали. Он может быть с фильтрами либо без них.

Вам это будет интересно   Установка УЗО в квартире

Чтобы влиять на частоту, происходит игра с сопротивлением. В цепи постоянного тока напряжение должно быть неизменным. С целью понижения частоты применяются фильтры. Основная проблема — это малая ёмкость. Чтобы детально ознакомиться с дросселем, стоит подробнее узнать о резонансной частоте, которая выделяется на контуре рабочего сигнала.

Когда в цепях повышается напряжение, на каркас оказывается нагрузка. В цепи постоянного тока задействуются непрозрачные проволочные резисторы. Также для этих целей подходят однослойные катушки типа «универсал». Их особенность — использование ферритовых стержней.

Низкочастотная катушка
Низкочастотная катушка

Высокочастотные

Устройства изготавливаются с различными типами обмотки. Речь идет о наборе преимуществ, которые спасают в той или иной ситуации. Сфера применения элементов широка, учитывается значительная частота модуляции. Таким образом удается бороться с повышенным сопротивлением металлов. У катушек имеется сердечник.

Основная задача — это модуляция частоты генератора. Она происходит за счёт усиления сигнала, и за процессом можно проследить при подключении осциллографа. Многие высокочастотные катушки не отличаются стабильной работой, поскольку применяется керамический каркас. У него малый срок годности, плюс они восприимчивы к повышенной влажности.

Интересно! Современные товары изготавливаются из алюминия и являются компактными.

Электрикам известны контурные, безконтурные модификации высокой частоты. В зависимости от намотки учитывается стабильность электрических параметров. У моделей высокой частоты могут применяться магниты и провода. Речь идет о порошковых материалах, сделанных из диэлектриков.

Процесс изготовления связан с методом холодного прессования. Индуктивные датчики отличаются по защищенности. На предприятиях элементы могут погружать в раствор либо продевать в трубку. Это делается с целью избежания коротких замыканий. Мировые производители решают проблему путем использование вторичного витка.

Высокочастотная катушка
Высокочастотная катушка

У моделей значительное сопротивление и есть проблема с концентрацией электролита. Таким образом изменяются свойства катушки индуктивности. Проводимость раствора падает и повышается частота электромагнитного поля.

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC — метра.

Что такое индуктивность?  Если через  провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

где

В — магнитное поле, Вб

I — сила тока, А

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с  Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

Зачем нужны бифилярные катушки индуктивности

Иногда катушка наматывается в две и более проволочных нитей. Тесла конструкцию применял для увеличения емкостных качеств. В результате становилось возможным экономить материалы – говорили выше. Что касается состояния на современном этапе развития технологий, причиной создания бифилярных катушек может быть следующее:

Бифилярные катушки индуктивности

Бифилярные катушки индуктивности

  1. Одна обмотка заземляется. Устраняет паразитную противо-ЭДС, вызывающую искрение, некоторые другие негативные эффекты. Когда резко пропадает напряжение, магнитное поле по большей части наводит тока в заземленной обмотке, поскольку активное сопротивление цепи наименьшее. Эффект противо-ЭДС гасится. В импульсных реле вспомогательная обмотка закорачивается. Энергия поля невелика, рассеивается активным сопротивлении меди в виде тепла.
  2. Идеи Тесла не забыты. Часто в виде бифилярных катушек изготавливаются резисторы малого номинала. Сопротивления часто имеют схожее строение. Например, известные МЛТ, лента навивается на керамическое основание. Суть затеи повысить емкостное сопротивление, компенсируя индуктивность. Импеданс резистора обращается в чисто активный. Смысл мероприятия велик при работе на переменном токе. В цепях постоянного мнимая часть импеданса (реактивное сопротивление) роли не играет.
  3. В импульсных блоках питания напряжение одной полярности, меняется по амплитуде. Позволит бифилярный трансформатор защитить от явления паразитной противо-ЭДС, спасает ключевой транзистор от пробоя. Дополнительная обмотка заземляется через диод, в обычном режиме не влияет на работу устройства. Противо-ЭДС имеет обратное направление. В результате p-n-переход открывается, разница потенциалов ограничивается прямым падением напряжения. Для кремниевых полупроводниковых диодов значение составляет 0,5 В. Понятно, напряжение не может пробить ключевой транзистор практически любого типа.
  4. Идеи Тесла используются при создании вечных двигателей (в литературе: СЕ – сверхъединичных устройств, с КПД выше 1). Используется возможность устранения реактивного сопротивления для идеализации процесса работы.

Как различаются катушки индуктивности

Данные элементы цепей обладают большим количеством

Данные элементы цепей обладают большим количеством видов и типов, которые зависят от способа и целей их использования. Иногда их разделяют по частотам. Среди них можно выделить следующие виды:

  1. Устройства низкой частоты. Используют как дроссели в люминесцентных лампочках, трансформаторы (при этом все обмотки можно считать индуктивными катушками), как фильтр от магнитных помех. Сердечник создаётся из электротехнических сталей, либо обычно делают шихтованные сердечники из листов (для цепей с переменным током).
  2. Устройства высокой частоты. Используются в приёмниках радио, для усиления сигнала связи, в качестве накопления и сглаживания дросселей в блоках питания, работающих импульсно. Сердечник в этом варианте сделан из феррита.

От параметров устройства индуктивности зависит его особенности конструкции.

Намотки выполняют как в один, так и в несколько сл

Намотки выполняют как в один, так и в несколько слоёв, приматывают к виткам или с расстоянием друг от друга. При этом различается даже расстояние: в зависимости от длины различают постоянные и прогрессивные шаги витков. От выбора вида наматывания и конструкции зависит конечный размер катушки.

Вариометр — это катушка, где индуктивность является переменной, она устроена немного иначе стандартных катушек.

Встречаются разные решения этого вида катушки:

  1. Иногда сердечники в них являются подвижными;
  2. Несколько обмоток располагают на едином сердечнике в последовательном соединении, индукция изменяется в зависимости от их размещения;
  3. Виток можно раздвинуть или сузить, от плотности намотки зависит понижение и повышение индуктивности.

Ротор является движущейся частью катушек. Статор неподвижной частью. Способы намоток тоже могут являться классификацией для катушек. Например, намотки в две стороны могут устранять помехи в сетях. Намотки по одной стороне устраняют помехи дифференциала.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Когда переменный синусоидальной ток (АС) протекает

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

где ω является угловой частотой резонансной частот

где ω является угловой частотой резонансной частоты F:

Причем, фаза тока отстает от напряжения на 90 град

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

 Индуктивное сопротивление ХL определяется по формуле:

где ХL — индуктивное сопротивление, ω &#8212

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

Маркировка

Маркировка

При рассмотрении катушек индуктивности оценивается цветовая и кодовая маркировка. Если смотреть на первые цифры, отображается показатель индуктивности. Далее учитывается параметр отклонения:

  • Серебряный 0,01 мкГн, 10%.
  • Золотой 0,1 мкГн, 5%.
  • Черный 0,1мкГн, 20%.
  • Коричневый 1,1 мкГн.
  • Красный 2, 2 мкГн.
  • Оранжевый 1 мкГн.
  • Желтый 4 мкГн.
  • Зеленый 5 мкГн.
  • Голубой 6 мкГн.
  • Фиолетовый 7мкГн.
  • Серый 8 мкГн.
  • Белый 9 мкГн.
Маркировка
Маркировка

В нестабильной цепи переменного электрического тока не обойтись без катушки индуктивности. Выше описаны основные типы изолированных проводников, продемонстрированы их параметры. Учитывается уровень частоты, а также свойства.

Теги