Биосинтез белков Содержание а также Транскрипция [ править ]

Белки — что это такое и для чего они нужны

Эти высокомолекулярные соединения играют огромную роль в жизни любого организма. Белки являются полимерами, то есть состоят из множества похожих «кусочков». Их количество может варьироваться от нескольких сотен до тысяч.

В клетке белки выполняют множество функций. Велика их роль и на более высоких уровнях организации: ткани и органы во многом зависят от правильной работы различных белков.

Например, все гормоны имеют белковое происхождение. А ведь именно эти вещества контролируют все процессы в организме.

Гемоглобин — тоже белок, он состоит из четырех цепей, которые в центре соединены атомом железа. Такая структура обеспечивает возможность переносить кислород эритроцитами.Напомним, что все мембраны имеют в своем составе белки. Они необходимы для переноса веществ сквозь оболочку клеток.

Существует еще множество функций белковых молекул, которые они выполняют четко и беспрекословно. Эти удивительные соединения очень разнообразны не только по своим ролям в клетке, но и по строению.

Видео

Сводная таблица главных участников трансляции

Для того чтобы описать биосинтез белка кратко и понятно, таблица просто необходима. В нее мы запишем все компоненты и их роль в этом процессе, который называется трансляцией.

Что необходимо для синтеза

Какую роль выполняет

Аминокислоты

Служат строительным материалом для белковой цепи

Рибосомы

Являются местом проведения трансляции

т-РНК

Транспортирует аминокислоты к рибосомам

м-РНК

Доставляет к месту синтеза информацию о последовательности аминокислот в белке

Сам же процесс создания белковой цепочки делится на три этапа. Давайте рассмотрим каждый из них более подробно. После этого вы сможете легко объяснить всем желающим биосинтез белка кратко и понятно.

Трансляция — второй этап биосинтеза белка

Трансляция — это перевод информации с языка нуклеотидов на язык аминокислот. 

Что же происходит в клетке? Трансляция представляет собой непосредственно процесс построения белковой молекулы из аминокислот. Трансляция происходит в цитоплазме клетки. В трансляции участвуют рибосомы, ферменты и три вида РНК: иРНК, тРНК и рРНК. Глав­ным по­став­щи­ком энер­гии при трансляции слу­жит мо­ле­ку­ла АТФ — аде­но­з­ин­три­фос­фор­ная кис­ло­та. 

Во время транс­ля­ции нук­лео­тид­ные по­сле­до­ва­тель­но­сти ин­фор­ма­ци­он­ной РНК пе­ре­во­дят­ся в по­сле­до­ва­тель­ность ами­но­кис­лот в мо­ле­ку­ле по­ли­пеп­тид­ной цепи. Этот про­цесс идёт в ци­то­плаз­ме на ри­бо­со­мах. Об­ра­зо­вав­ши­е­ся ин­фор­ма­ци­он­ные РНК вы­хо­дят из ядра через поры и от­прав­ля­ют­ся к ри­бо­со­мам. Ри­бо­со­мы — уни­каль­ный сбо­роч­ный ап­па­рат. Ри­бо­со­ма сколь­зит по иРНК и вы­стра­и­ва­ет из опре­де­лён­ных ами­но­кис­лот длин­ную по­ли­мер­ную цепь белка. Ами­но­кис­ло­ты до­став­ля­ют­ся к ри­бо­со­мам с по­мо­щью транс­порт­ных РНК. Для каж­дой ами­но­кис­ло­ты тре­бу­ет­ся своя транс­порт­ная РНК, ко­то­рая имеет форму три­лист­ни­ка. У неё есть уча­сток, к ко­то­рому при­со­еди­ня­ет­ся ами­но­кис­ло­та и дру­гой три­плет­ный ан­ти­ко­дон, ко­то­рый свя­зы­ва­ет­ся с ком­пле­мен­тар­ным ко­до­ном в мо­ле­ку­ле иРНК.

Це­поч­ка ин­фор­ма­ци­он­ной РНК обес­пе­чи­ва­ет опре­де­лён­ную по­сле­до­ва­тель­ность ами­но­кис­лот в це­поч­ке мо­ле­ку­лы белка. Время жизни ин­фор­ма­ци­он­ной РНК ко­леб­лет­ся от двух минут (как у неко­то­рых бак­те­рий) до несколь­ких дней (как, на­при­мер, у выс­ших мле­ко­пи­та­ю­щих). Затем ин­фор­ма­ци­он­ная РНК раз­ру­ша­ет­ся под дей­стви­ем фер­мен­тов, а нук­лео­ти­ды ис­поль­зу­ют­ся для син­те­за новой мо­ле­ку­лы ин­фор­ма­ци­он­ной РНК. Таким об­ра­зом, клет­ка кон­тро­ли­ру­ет ко­ли­че­ство син­те­зи­ру­е­мых бел­ков и их тип.

Трансляция пошагово:

  1. Рибосома узнаёт КЭП, садится на иРНК. 
  2. На Р-сайт рибосомы приходит первая тРНК с аминокислотой. 
  3. На А-сайт рибосомы приходит вторая тРНК с аминокислотой. 
  4. АК образуют пептидную связь. 
  5. Рибосома делает шаг длиною в один триплет. 
  6. На освободившийся А-сайт приходит следующая тРНК. 
  7. АК образуют пептидную связь. 
  8. Процессы 5–7 продолжаются, пока рибосома не встретит стоп-кодон. 
  9. Рибосома разбирается, отпускает полипептидную цепь. 

Что такое инициация, описание

Первый пункт процесса обеспечивается специальными белками, которые называются факторы инициации. Основная цель — связать малую субъединицу рибосомы с мРНК. Есть особенности, как все протекает у эукариот и прокариот. 

Для возникновения инициации нужно еще наличие определённых нуклеотидных последовательностей в районе стартового кодона (у прокариот это последовательность Шайна-Дальгарно, у эукариот последовательность Козак).

  • У прокариот рибосомы способны находить стартовый AUG-кодон и инициировать синтез на любых участках мРНК.
  • У эукариот рибосомы как правило присоединяются к мРНК в области 5'-кэпа и только потом начинают искать на ней стартовый кодон. 

В отличие от прокариот, инициация трансляции у которых обеспечивается лишь 3 белковыми факторами, трансляция подавляющего большинства мРНК у эукариот требует как минимум 13 общих эукариотических факторов инициации.

Терминация, как заключительный этап

Процесс элонгации продолжается до тех пор, пока в А-участок не попадет стоп-кодон, для которого в клетке нет тРНК с комплементарным антикодоном. На этом процесс элонгация завершается и начинается завершающий этап — терминация.

Начинают работать специальные протеины, которые называются факторами терминации.

Они узнают стоп-кодоны и связываются в рибосоме в А-участке на место тРНК. Совершается гидролиз связи с тРНК синтезированного пептида. Далее освободившаяся тРНК покидает рибосому, а образовавшийся пептид становится самостоятельным. Целая рибосома разделяется на субъединицы и освобождает матричную РНК.

Теги